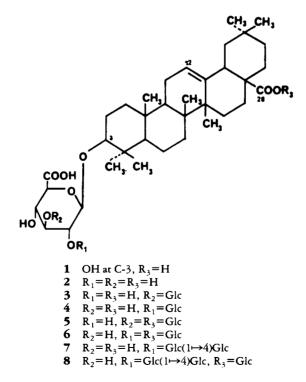
A NEW OLEANOLIC GLYCOSIDE FROM POLYSCIAS SCUTELLARIA

S. PAPHASSARANG, J. RAYNAUD,* M. LUSSIGNOL,

Département de Botanique, Biologie cellulaire et Pharmacognosie, Faculté de Pharmacie de Lyon, Université Claude Bernard, 8 Avenue Rockefeller, 69008 Lyon, France


and P. CABALION

UR4G (Substances Naturelles d'Intérêt Biologique) Dépt Santé, 213, rue Lafayette, 75010 Paris, France

ABSTRACT.—A new triterpenoid saponin, named polysciasaponin P₁ [8], has been isolated from *Polyscias scutellaria* leaves and identified as 3-0-[β -D-glucopyranosyl(1 \mapsto 4)- β -D-glucopyranosyl(1 \mapsto 2)- β -D-glucuronopyranosyl] oleanolic acid 28-0- β -D-glucopyranoside. The structure was established by chemical and spectroscopic means (fabms, ¹³C nmr, gc-ms).

In previous work, we reported the isolation and structure determination of polysciasaponins P_7 [2], P_6 [3], P_4 [5] (1), P_5 [4], and P_2 [7](2) from the leaves of *Polyscias scutellaria* (Burm.f.) Fosb (Araliaceae) used in the islands of the Western Pacific Ocean, especially in Vanuatu, as an anti-inflammatory. In the present paper we report the isolation and structure elucidation of polysciasaponins P_3 [6] and P_1 [8]; P_1 is a new oleanolic glycoside. An EtOH extract of dried leaves was fractionated. The *n*-BuOH fraction yielded a crude mixture of saponins. Separation of the *n*-BuOH extract by cc and preparative tlc on Si gel afforded pure saponins P_1 and P_3 .

On acid hydrolysis, polysciasaponins P_1 and P_3 afforded oleanolic acid [1] as the aglycone, identified by comparison with a standard sample (tlc, ms, and gcms). The sugars obtained from the hydrolysates were identified by tlc and gc

 $Glc = \beta$ -D-glucopyranosyl

as glucuronic acid and glucose for P_1 (1:3), glucuronic acid and glucose for P_3 (1:2).

The mol wt and the sugar sequence of P_1 and P_3 were established by fabms in negative ion mode. The following signals were observed: m/z 1117 for P_1 , m/z 955 for P_3 corresponding to depronated molecular ion $[M - H]^-$; m/z 955 for P_1 and m/z 793 for P_3 resulting from the loss of a glucosyl moiety $[M - H - 162]^-$.

On mild acid hydrolysis, P_1 initially gave P_2 , P_3 , P_5 , then P_7 ; polysciasaponin P_3 initially gave P_5 and P_7 .

Basic hydrolysis of polysciasaponin P_1 yielded P_2 , 3-0-[β -D-glucopyranosyl(1 \rightarrow

4)- β -D-glucopyranosyl(1 \mapsto 2)- β -D-glucuronopyranosyl] oleanolic acid; basic hydrolysis of P_3 afforded P_5 , 3-0-[β -Dglucopyranosyl($1 \mapsto 2$)- β -D-glucuronopyranosyl] oleanolic acid. These results indicated that polysciasaponins P1 and P_3 are ester glycosides of P_2 and P_5 , respectively. The structure of polysciasaponin P_2 was established as 3-0-[β -Dglucopyranosyl($1 \mapsto 4$)- β -D-glucuronopyranosyl] oleanolic acid (1), and polysciasaponin P₅ as 3-0- $[\beta$ -D-glucopyranosyl($1 \mapsto 2$)- β -D-glucuronopyranosyl] oleanolic acid (4). Upon comparison of the 13 Cnmr spectrum of P_1 with that of P_2 (Table 1), all of the carbon signals of the

TABLE 1. ¹³C nmr Spectral Data of Polysciasaponins P_1 [8] and P_2 [7] in C_3D_3N (δ ppm/TMS).

Carbon	Polysciasaponin P ₁	Polysciasaponin P ₂
Oleanolic acid		
C-3	89.52	89
C-12	122.10	122.2
C-13	144.12	144.52
C-28	176.28	179.9
	(-3.6 ppm)	
Glucuronic acid		
C-1'	104.40	104.6 ⁸
C-2'	83.26	82.9
C-3'	76.43°	76.4 ^h
C-4'	71.85°	71.15
C-5'	76.46 ^c	76.1 ^h
С-6'	174.35	174.4
Glucose		
C-1"	104.71 ^ª	104.4 ^g
C-2"	73.91 ^b	74.5
C-3"	78.10 ^d	77.20 ⁱ
C-4"	80.97	80.5
C-5"	77.63 ^d	78.07 ⁱ
C-6″	62.40 ^f	62.2
Glucose		
C-1‴	104.67ª	104.3 ^g
C-2‴	74.71 ^b	74.5
C-3‴	77.63 ^d	77.25 ⁱ
C-4‴	71.34 ^e	71.16
C-5‴	77. 58 ^d	77.85 ⁱ
C-6‴	62.31 ^f	61.9 ⁱ
Glucose		
C -1 ^{""}	95.54	
C-2""	73.74 ^b	
C-3''''	78.73 ^d	
C-4""	71.90°	
C-5""	78.47 ^d	
C-6''''	62.97 ^f	

^{a-j}Signals with the same superscript are interchangeable.

aglycone and glucosyl moieties appeared at almost the same positions, demonstrating that P_1 is an ester glycoside of P_2 . The chemical shift of C-28 of the aglycone moiety of P_1 was displaced downfield by 3.6 (176.3 ppm for P_1 ; 179.9 ppm for P_2), indicating that the carboxy group is esterified with a glucosyl moiety.

The second molecule of glucose in polysciasaponin P_3 might be linked either with COOH-28 of oleanolic acid or COOH-6' of glucuronic acid. Methylated derivative of P_3 obtained with CH_2N_2 was successively hydrolyzed with β -glucosidase and β -glucuronidase. Oleanolic acid, and not an aglycone methylester, was obtained, clearly indicating that one β -D-glucose is linked to the C-28 at the carboxylic acid of oleanolic acid.

In conclusion, the structure of polysciasaponin P₁ was established as 3-O-[β -D-glucopyranosyl (1 \mapsto 4)- β -D-glucopyranosyl (1 \mapsto 2)- β -D-glucuronopyranosyl] oleanolic acid-28-O- β -D-glucopyranoside [**8**] and the structure of polysciasaponin P₃ as 3-O-[β -D-glucopyranosyl(1 \mapsto 2)- β -D-glucuronopyranosyl] oleanolic acid 28-O- β -D-glucopyranoside [**6**]. Polysciasaponin P₃ is identical with chikusetsusaponin V, isolated from *Panax* species (3-9).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.-Gc-ms was performed on a SE54 coated quartz capillary column with a Hewlett-Packard in electronic impact mode. Fabms were obtained on a VG Micromass ZAB-HF spectrometer in the negative ion mode; samples were suspended in polyethylene glycol; ¹³C-nmr spectra were recorded on a Brucker WP 200 in C₅D₅N. The chemical shifts are given in ppm. TMS was used as internal standard. Tlc was carried out on Si gel 60 (Merck). The tlc systems employed were: for saponins n-BuOH-HOAc-H2O (4:1:1) (system 1), EtOAc-MeOH-H2O (20:5:2) (system 2), and CHCl₃-MeOH-H₂O (30:15:2) (system 3); and for aglycones CHCl₃-MeOH (97:3) (system 4) and C₆H₆-EtOAc (3:1) (system 5).

PLANT MATERIAL.—The leaves of *P. scutellaria* were collected from Vanuatu by P. Cabalion (ORSTOM). A voucher specimen is deposited in the Herbarium of Botany and Pharmacognosy, Faculté de Pharmacie, Lyon. EXTRACTION AND ISOLATION OF THE SAPO-NINS.—Leaves (750 g) were extracted with hot EtOH. The EtOH extract was concentrated, diluted with H_2O , and extracted with CHCl₃ to remove lipid material. The H_2O solution was extracted with EtOAc, then *n*-BuOH. The *n*-BuOH layer was evaporated to dryness to give a crude saponin fraction (21 g). The separation was carried out on a column packed with Si gel 60 (Merck) using a solvent gradient of CHCl₃-MeOH- H_2O (70:2:2 to 70:40:10). Six fractions were collected. Fraction 4 gave polysciasaponin

Oleanolic Glycoside

Saponins P_1 and P_3 were further separated on tlc (Si gel) with *n*-BuOH-HOAc-H₂O (4:1:1) (detection with iodine) to give pure P_1 and P_3 . METHYLATION BY CH₂N₂.—To an Et₂O solu-

 P_3 (30 mg); fraction 6 gave polysciasaponin P_1 .

METHYLATION BY CH_2N_2 .—10 an Et_2O solution of saponin (15 mg), freshly prepared CH_2N_2 in Et_2O was added in excess. The mixture was kept at 37° for 1 h. The reaction product obtained on workup formed a yellow product.

ACID HYDROLYSIS.—The saponin [5 mg in MeOH-H₂O (2:1) (5 ml)] was refluxed in 0.1 M HCl (5 ml) for 6 h. The aglycone was extracted with CHCl₃ and identified with an authentic sample by tlc on Si gel and gc-ms after silylation. The aqueous layer was neutralized with N,Noctyl-methylamine and evaporated to dryness. The sugars were identified by gc after silylation and by tlc on Si gel using *n*-BuOH–iPrOH–H₂O (5:3:1), or on cellulose using *n*-BuOH–C₅H₅N–HCl (5:3:2); compounds were visualized by spraying with aniline hydrogen phthalate and then heating (110°, 10 min).

PARTIAL ACID HYDROLYSIS.—The saponin (5 mg) in MeOH (0.2 ml) and 1 M HCl (0.2 ml) was kept at 70°; after 80 min the mixture was separated by tlc on Si gel with *n*-BuOH–HOAC– H_2O (4:1:1) to obtain the partially hydrolyzed products.

ENZYMATIC HYDROLYSIS.—The enzymatic hydrolysis was carried out with 1 ml of saponin solution (0.5 ml, pH 6) and 5 mg of β glucosidase (Extrasynthèse EC 3.2.1.21 300 U/ mg) or 0.3 ml of β -glucuronidase (Merck Art. 4114, 12 U/ml, from *Helix pomatia*) during 24 h at 37°. After extraction with CHCl₃ (sapogenin), glucose or glucuronic acid was identified in the aqueous phase and oleanolic acid in the organic layer.

ALKALINE HYDROLYSIS.—Alkaline hydrolysis was performed at 80° for 3 h with 5 mg of saponin in 1 M NaOH (5 ml). After acidification by 1 M HCl (pH 5), monodesmoside was extracted with *n*-BuOH.

POLYSCIASAPONIN P₁ [8].—White powder: mp 263°; tlc R_f 0.22 (system 1), 0.03 (system 2), 0.02 (system 3); fabms m/z 1117 [M – H]⁻, 955 $[M - H - 162]^{-}$; ¹³C nmr (C₅D₅N) δ 89.5 (C-3), 122.10 (C-12), 144.1 (C-13), 176.3 (C-28), 104.4 (C-1'), 104.7 (C-1"), 104.6 (C-1""), 95.5 (C-1"").

POLYSCIASAPONIN P₃ [6].—Amorphous powder: mp 260°; tlc R_f 0.38 (system 1), 0.09 (system 2), 0.06 (system 3); fabms m/z 955 $[M - H]^-$, 793 $[M - H - 162]^-$. Enzymatic hydrolysis of the methylate derivative of P₃ afforded oleanolic acid, identified by comparison with an authentic sample.

ACID HYDROLYSIS.—Polysciasaponins P_1 and P_3 gave oleanolic acid identified by tlc $\{R_f 0.71 (system 4), 0.56 (system 5)\}$ and by gc-ms after silylation: ms m/2 $[M]^+$ 600, $[M - COOSi Me_3]^+$ 483, $[M - 280]^+$ 320, $[M - 321]^+$ 279, $[M - 397]^+$ 203, $[M - 411]^+$ 189. The sugars were identified by tlc and by gc after silylation. The sugar components were Glc-GlcA (3:1) for saponin P_1 , Glc-GlcA (2:1) for saponin P_3 .

PARTIAL ACID HYDROLYSIS.— P_1 gave P_2 , P_3 , P_5 , and P_7 ; P_3 yielded P_5 followed by P_7 .

ALKALINE HYDROLYSIS.— P_1 afforded P_2 ; P_3 gave P_5 .

ACKNOWLEDGMENTS

The authors are grateful to Prof. K. Hos-

tettman (University de Lausanne) for calenduloside E sample.

LITERATURE CITED

- S. Paphassarang, J. Raynaud, M. Lussignol, and M. Becchi, *Phytochemistry*, 28, 1539 (1989).
- S. Paphassarang, J. Raynaud, M. Lussignol, and M. Becchi, J. Nat. Prod., 52, 239 (1989).
- N. Kondo, Y. Marumoto, and J. Shoji, Chem. Pharm. Bull., 19, 1103 (1971).
- N. Kondo, J. Shoji, and O. Tanaka, Chem. Pharm. Bull., 21, 2705 (1973).
- T.M. Lee and A.D. Marderosian, J. Pharm. Sci., 70, 89 (1981).
- H.L. Li, "Flora of Taiwan: A Check List of the Vascular Plants of Taiwan." Ed. by Epoch, Taiwan, 1979, Vol. VI, p. 665.
- T. Morita, R. Kasai, O. Tanaka, J. Zhou, T. Yang, and J. Shoji, *Chem. Pharm. Bull.*, **30**, 4341 (1982).
- S. Sanada and J. Shoji, Shoyakugaku Zasshi, 32, 96 (1978).
- T. Yang, Z. Jiang, M. Wu, J. Zhou, and O. Tanaka, Acta Pharm. Sin., 19, 232 (1984).

Received 24 April 1989